
Game Balancing - Relay Race 
example

“Warm Fuzzy makes Salad”

Dale Wick
AdamCon 17
July 17, 2005



Relay Race Game Rules

● Relay race rules
– Each participant picks up a goal combination of 

vegetables, and put them in that player's basket
– The participant can carry up to two items at a time
– For each level there are specific vegetables that are the 

goal for the salad.
– Once all ingredients are captured by one player, the level 

is scored.
– (Some vegetables are worth more than others, or are 

more rare than others, non-ingredients are worthless.)



Appearance

● Map appearance is a 
garden with walls, 
water, bushes and 
vegetables

● The stats are at the top 
show inventory
– Holding (up to 2), Has 

(up to 4) and needing 
(up to 4)

● The target baskets are 
black squares



Some Vegetables

● Carrot
● Lettuce
● Celery
● Tomato
● Cucumber
● Green Pepper



More Vegetables and Fruit

● Radish
● Parsley
● Orange
● Pineapple



Enough Vegetables and Fruit

● Potato
● Pineapple
● Apple
● Black olive



The Actors Appearance

● Each contestant is 
represented by a sprite 
which is animated
– up, down, left, right
– Movement is in 8 

directions
● Fire buttons control “has”

– Left fire button picks 
up/drops in left paw.

– Right fire button picks 
up/drops in right paw.



Possible Refinements and 
Restrictions
● Could add many levels, we will work with just 1.
● Could add non-passable barriers.
● There is always 3 of any needed ingredient to 

prevent hoarding, and only one of each is needed.
– If an ingredient that is not needed can't be dropped on 

the players home square
– If the player delivers one to that player's basket, then 

grabs the other two, the play is deadlocked with neither 
player able to complete the level until one of the 
remaining two ingredients is dropped somewhere on the 
map.



General Strategy

● P vs. P is pretty straight forward symmetric 
relationship
– This competition is automatically balanced and playable 

against players of similar skill if garden is prepared fairly.
– Contains true head to head competition, since players 

can rearrange locations of ingredients, or some can be 
closer to the player than others

● P vs. C requires some pacing and some artificial 
smarts
– Need shortest path to get ingredient
– Need heuristic to determine which ingredient to get, and 

when to drop in basket



Non-player Character (NPC) 
Overview
● Pseudo code for overall strategy computer strategy, 

to complete level fastest:
– If holding two items, return them to basket
– If at basket and holding items, drop items in basket
– Locate closest needed ingredient (in “need” list, not 

“has” or “hold” lists). If two needed ingredients are the 
same distance away, choose one at random.

– Fixate on traveling to chosen ingredient unless ingredient 
is captured by opponent or actor is next to it.

– If next to it, pick it up in a free hand.



NPC Enhancements

● Strategies the computer might choose:
– Re-arrange one key ingredient to make it tougher to 

complete
– Pace choices based on level
– Weighted based on the level the computer might choose 

a wrong ingredient, or might pick up two of the same 
ingredient, thus wasting trips



Checkpoint to explore.

● How could the game be modified to employ vast 
resources?

● How could the game be modified to demonstrate 
asymmetric relationship using plastic asymmetry?

● How could the game be modified to provide 
triangularity?



Finite State Machine

● Keep track of the mode of thinking by a “state”
● Each time the character updates, perform an action 

based on the state: move, pick up, drop off
● The states are:

– 1 – seek ingredient
– 2 – travel to ingredient
– 3 – standing at ingredient
– 4 – travel to basket
– 5 – standing at basket

1 2

3

4
5



Data structure for FSM

struct Actor {
char id,frame,dir; /* sprite id, visible frame, direction */
char x,y; /* Position on map */
char hold[2]; /* What the actor is holding in its paws */
char has[4]; /* What the actor has in its basket */
char need[4]; /* The closeness to the win condition */
long score;
char isNPC; /* Is played by real player or not */
char state; /* for NPC, what it thinking */
char targetx,targety; /* Where the NPC is walking to */
char target; /* The ingredient that the actor is after */

};



State 2 – Travel to ingredient or 
state 4 – Travel to basket
● Case 2 and 4:
void walk_towards(Actor *actor) {

if(actor->target>0) {
if(get_char(actor->targetx/8,actor->targety/8)!=actor->target) {

actor->state=1; /* The thing we're targeting is gone, sostate 1 */
return;

}
}
if(actor->targetx==actor->x && actor->targety==actor->y) {

actor->state=actor->state==2?3:5;
}
actor->dir=choose_direction(actor->x,actor->y,actor->targetx,actor->targety);

}



Choose a direction to walk

char choose_direction(char fromx,char fromy,char 
tox,char toy) {
if(fromx==tox && fromy==toy) return DIR_NONE;
if(fromx==tox) return fromy<toy?DIR_DOWN:DIR_UP;
if(fromy==toy) return fromx<tox?DIR_LEFT:DIR_RIGHT;
/* Now do diagonal choices */
if(fromx<tox) {

return fromy<toy?DIR_UPLEFT:DIR_DOWNLEFT;
}
/* fromx>tox */
return fromy<toy?DIR_DOWNLEFT:DIR_DOWNRIGHT;

}



State 3 – standing at ingredient

void standing_at_ingredient(Actor *actor) {
char c=get_char(actor->x/8,actor->y/8);
if(c!=actor->target) {

actor->state=1; /* Wild goose chase, so make a new plan */
return;

}
if(hold[0]==0) hold[0]=c; else if(hold[1]==0) hold[1]=c;
put_char(actor->x/8,actor->y/8,0x8c)
if(hold[0]!=0 && hold[1]!=0)

actor->state=4;
else

actor->state=1;
}



State 5 – standing at basket

void standing_at_basket(Actor *actor) {
if(hold[0]!=0) {

drop_left(actor);
}
if(hold[1]!=0) {

drop_right(actor);
}
actor->state=1;

}



Drop left

void drop_left(actor) {
if(hold[0]==0) return;
if(on_basket(actor)) {

int i;
for(i=0;i<need[i];i++) {

if(need[i]==0) {
need[i]=hold[0];
hold[0]=0;
return;

}
}

} else {
put_char(actor->x/8,actor->y/8,hold[0]);
hold[0]=0;

}
}



On Basket

int on_basket(Actor *actor) {
if(actor->y<10) return 0;
if(actor->y>13) return 0;
if(actor->id==1) {

if(actor->x<6) return 1;
} else {

if(actor->x>28) return 1;
}
return 0;

}



State 1 seek

● Search map for ingredients
● Keep track of near by ones
● Choose nearest one somehow (with randomness)



Code for State 1

● Pseudo code:
– Make list of interesting needed ingredients
– Loop through squares on the map

● Check for a matching ingredient
– Keep closest needed ingredient
– Return target in actor structure



Implementation of state 1

void seek_ingredient(Actor *actor) {
char i,x,y,count; /* counters, the number of ingredients */
char want[4];
char closest=0,closestx=0,closesty=0,closestdist=127;

for(i=0,count=0;i<4;i++) {
char n=actor->need[i];
if(n!=0 && n!=actor->has[0] && n!=actor->has[1]) {

want[count++]=n;
}

}

... (continued next slide) ...



Implementation of state 1 
(continued)

...
for(y=6;y<24;y++) {

for(x=2;x<32;x++) {
char c=get_char(x,y);
for(i=0;i<count;i++) {

if(c==want[i]) {
char dist=calcdistance(actor->x,actor->y,x,y);
if(dist<=closestdist) {

closestx=x; closesty=y; closest=c; closestdist=
}

}
}

}
}
...(continued on next slide)...



Implementation of state 1 
(continued)

...
if(closest==0) {

return; /* Stay in state 1 */
}
actor->target=closest;
actor->targetx=closestx;
actor->targety=closesty;

}


