

High Powered Computer
Graphics in C (Space Harrier)

Dale Wick
AdamCon 21, June 27, 2009.

Grand Rapids Michigan
- different forms of graphics display loops
- interrupt based graphics versus main loop graphics

- displaying graphics at different update frequencies.

Outline

● Graphics in Space Harrier arcade game
● Sprite conversion for hero of Space Harrier
● Adding perspective to the land
● Clouds and mountains add parallax
● Simulating 3D dragons with character based

graphics
● Adding Explosions

Outline

● Graphics in Space Harrier arcade game
● Sprite conversion for hero of Space Harrier
● Adding perspective to the land
● Clouds and mountains add parallax
● Simulating 3D dragons with character based

graphics
● Adding Explosions

Graphics in Space Harrier

● Motivation
– Daniel made the theme song, title screen and

some sound samples.
● Arcade Game

– The arcade unit has double buffered graphics,
powered by two 68000s plus a Z80 which is
used for sounds.

Screenshot from Arcade Game

Outline

● Graphics in Space Harrier arcade game
● Sprite conversion for hero of Space Harrier
● Adding perspective to the land
● Clouds and mountains add parallax
● Simulating 3D dragons with character based

graphics
● Adding Explosions

Sprite Conversion of hero

● Sprite Mode on the Adam/ColecoVision video
chip (the TMS9918 video display processor)

– the graphics mode allows up to 32 active sprites
that are either 8x8 or 16x16 pixels (or dots).

– The sprites are overlayed over the regular
graphics.

– Each sprite has one of the 15 colours, and is
transparent everywhere else.

– There is a restriction that the TMS9918 displays
at most 4 sprites on a line.

Extract sprite from screen shot

Cut out the sprite

● Remove just the sprite and erase
the background

● Scale it so that it'll fit in two
sprites wide, with two colours
per 16x16 region

● This image is 31x56

Colour reduce sprite

● Using the GIMP trace the
sprite shape with a new
layer, which colour
reduces it, with a
TMS9918 palette.

● Export the result in XPM
format for conversion to
the sprite format.

Export in XPM format

● The XPM file is a graphics file
written as C code. It is
basically like ASCII art.

/* XPM */

static char * space_harrier_sprite_xpm[] = {

"31 52 9 1",

" c None",

". c #FFFFFF",

"+ c #D6C500",

"@ c #F7F742",

"# c #F70000",

"$ c #000000",

"% c #A4A4F7",

"& c #94D6F7",

"........+@@@+..................",

".......+@+@@@@+................",

"......+@@@@@@@+................",

"......+@+++@@+@.#####..........",

"......+@+@@@@@+.#####..........",

"......++@++@++@#######.........",

"......@+@++++@@#######.........",

".......+@+++@@##########.......",

"........@+@@@############......",

"........##################.....",

"......############$########....",

".....##############$#######....",

".....###############$######....",

Read and make sprites

● Search for all images of one colour in the XPM
● Calculate the size of each solid color area

– The colours used are: light blue, cyan, dark red,
light red, gray, dark yellow, black, and
brownish-red

● Areas are as follows:

Colour area sizes

● color 15 (gray) Sprite at 6,0 -> 14,8 (8 x 8) sprite count=1 (1 x 1)
● color 10 (light yellow) Sprite at 6,0 -> 14,8 (8 x 8) sprite count=1 (1 x 1)
● color 8 (bright red) Sprite at 5,3 -> 27,21 (22 x 18) sprite count=4 (2 x 2)
● color 1 (black) Sprite at 13,10 -> 28,23 (15 x 13) sprite count=1 (1 x 1)
● color 4 (dark blue) Sprite at 5,21 -> 27,42 (22 x 21) sprite count=4 (2 x

2)
● color 5 (light blue) Sprite at 8,22 -> 24,37 (16 x 15) sprite count=1 (1 x

1)
● color 6 (brownish red) Sprite at 0,38 -> 30,50 (30 x 12) sprite count=2 (2

x 1)

Sample of output as sprites

byte SPATT[]={

/* Output color 15 */

/* Sprite at 6,0 -> 14,8 (8 x 8) */

/* sprite count=1 (1 x 1) */

0x22,0x50,0x80,0xb9,0xa0,0xdb,0x5e,0x5c,0x10,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x80,0x80,0x00,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

/* Output color 10 */

/* Sprite at 6,0 -> 14,8 (8 x 8) */

/* sprite count=1 (1 x 1) */

0x1c,0x2f,0x7f,0x46,0x5f,0x24,0xa1,0x23,0x2e,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

Output as sprites continued

/* Output color 8 */

/* Sprite at 5,3 -> 27,21 (22 x 18) */

/* sprite count=4 (2 x 2) */

0x00,0x00,0x00,0x00,0x00,0x00,0x1f,0x7f,0xff,0xff,0xff,0xff,0xff,0xff,0x7f,0x7f,

0x1f,0x1f,0x3f,0x3f,0x7f,0xff,0xff,0xfb,0xfd,0xfe,0xfe,0xfc,0xf8,0xfb,0xf7,0xf0,

0x00,0x00,0x80,0x80,0xe0,0xf0,0xf8,0xfc,0xfc,0xfc,0x60,0xf0,0x60,0x9c,0x6e,0xf0,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x3f,0x1f,0x1f,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x03,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x9c,0x20,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,

Screenshot in Virtual Coleco

Update based on user input

● Updates at full speed (60 fps)
– We set the video display processor (VDP) to

give a Non-Maskable Interrupt (NMI) every
60th of a second

– The NMI must complete (and tell the VDP it is
done) before the next NMI is triggered

– This is easy when just updating the sprite table
● Moves in 2 pixel increments

– Makes it seem quite responsive

Outline

● Graphics in Space Harrier arcade game
● Sprite conversion for hero of Space Harrier
● Adding perspective to the land
● Clouds and mountains add parallax
● Simulating 3D dragons with character based

graphics
● Adding Explosions

Moving ground and parallax

● The idea is to have the feeling of moving
forward on a plane.

– When the player moves up and down we will
move the skyline up and down in 8 pixel units

– When the player moves left and right, the clouds
and mountains will move in 2 pixel units

– The ground will update at 20 fps (every 3rd NMI)

Format of the ground

● TMS9918 (the VDP) mode
– Create a column of 12 character tiles in

the character set
– Each character is an 8x8 tile with a pattern

and colours.
– The colours are either light green or dark

green
– The patterns loop after 8 frames
– Height is up to 96 pixels or half the screen

Calculate one frame of the ground

bar=0;

distance=6;

for(y=95;y>=0;y--) {

 if(bar<128 || (bar>256 && bar<384)) ground[y]=0xff; else ground[y]=0;

 bar=bar+distance;

 if(bar>=256) {

 bar-=256;

 distance+=9;

 }

}

How does it look?

distance bar increment solid line
33 9 9 255 26
33 42 9 255 25
33 75 9 255 24
33 108 9 255 23
33 141 9 0 22
33 174 9 0 21
33 207 9 0 20
33 240 9 0 19
42 17 9 255 18
42 59 9 255 17
42 101 9 255 16
42 143 9 0 15
42 185 9 0 14
42 227 9 0 13

Add in the offset

bar=0;
distance=6;
for(y=95;y>=0;y--) {

if(bar<128-off*32 || (bar>256-off*32 && bar<384-off*32))
 ground[y]=0xff;
 else
 ground[y]=0;

bar=bar+distance;
if(bar>=256) {

bar-=256;
distance+=9;

}
}

Play the animation

● Reprogram the 12 characters every 3rd NMI (at
20 fps)

● Switch between the 8 different scrolling frames
● Repeat the 12 characters all across the screen

– See sharr3.rom

Outline

● Graphics in Space Harrier arcade game
● Sprite conversion for hero of Space Harrier
● Adding perspective to the land
● Clouds and mountains add parallax
● Simulating 3D dragons with character based

graphics
● Adding Explosions

Clouds and mountains

● Use the movement of the clouds and
mountains to add a parallax effect to
enhance the feeling of depth

● Move in 2 pixel increments, so we need to
repeat the characters 4 times in different
postions

ICVGM Character Map

● Character Set
– Mountains are

made of
triangles with
two red
colours plus
sky

– Clouds use two
colours plus
the sky colour

Refinement of mountains

Outline

● Graphics in Space Harrier arcade game
● Sprite conversion for hero of Space Harrier
● Adding perspective to the land
● Clouds and mountains add parallax
● Simulating 3D dragons with character based

graphics
● Adding Explosions

Simulating 3D dragon

● The dragon path is based on the formula:
for(i=0;i<MAX;i++) {

 cz=cosf(i*M_PI/64.0f)*(i<128?128-i:i-128)*radius/128;

 x=cx+cosf(i*M_PI/16.0f)*radius;

 z=cz+sinf(i*M_PI/16.0f)*radius;

 y=cy;

 sx=(x-16)+16;

 sy=(y-12)+12+z/4;

 sz=z;

 printf("{%d,%d,%d}, /* %.4f,%.4f,%.4f */\n",sx,sy,sz,x,y,z);

}

Dragon with size cues

● The dragon is drawn into a 512 byte buffer in
the ColecoVision's 1k of RAM

– That excludes the bottom of the ground, and the
clouds at the top (4 lines at the top, and 4
lines at the bottom)

– There are 3 versions each of the head, dark
body and light body. These version are 1x1,
2x2 and 3x2 character tiles.

The dragon character set

● When the layers
are overlapping
there are double
green versions

● When they are
over the sky
there are
versions with
cyan sky

The Greenness grid

const unsigned char
greenness[256]={

 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */

0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0, /* 0 */

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 1 */

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 2 */

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 3 */

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 4 */

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 5 */

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 6 */

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 7 */

1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,0, /* 8 */

1,1,1,1,1,1,1,1,0,0,0,0,0,1,1,0, /* 9 */

0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0, /* a */

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b */

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* c */

0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, /* d */

0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e */

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* f */

};

Check the depth and draw

#define DRAGONFAR -7

#define DRAGONNEAR 3

void drawDragonBody(unsigned char *buff,char x,char y,char z,unsigned char
color) {

 unsigned char *cell=buff+x+y*32;

 if(z<DRAGONFAR) { // small

 cell[0]=0x8B+color*3;

 } else if(z<DRAGONNEAR) { // medium

Check depth and draw medium

 if(color) {

 cell[0]=greenness[cell[0]]?0x9d:0x83;

 cell[1]=greenness[cell[1]]?0xa5:0x93;

 cell[32]=greenness[cell[32]]?0x9e:0x84;

 cell[33]=greenness[cell[33]]?0xa6:0x94;

 } else {

 cell[0]=greenness[cell[0]]?0xd1:0x85;

 cell[1]=greenness[cell[1]]?0xd9:0x95;

 cell[32]=greenness[cell[32]]?0xd2:0x86;

 cell[33]=greenness[cell[33]]?0xda:0x96;

 }

Check depth and draw far

} else { // large

 if(color) {

 cell[-33]=greenness[cell[-33]]?0x9d:0x83;

 cell[-32]=0x8b;

 cell[-31]=greenness[cell[-31]]?0xa5:0x93;

 cell[-1]=0x8c;

 cell[0]=0x8c;

 cell[1]=0x8c;

 cell[31]=greenness[cell[31]]?0x9e:0x84;

And so on...

Drawing the overall body

// Panter's algorithm, back to front.

start=minz; end=maxz;

for(j=start;j<=end;j++) {

 for(i=0;i<MAXDRAGONCELL;i++) {

 if(dragonCell[i].z!=j) continue;

 if(i!=0 && i!=MAXDRAGONCELL-1)

 drawDragonBody(buff,dragonCell[i].x,dragonCell[i].y-miny,
dragonCell[i].z,i&1);

 else

 drawDragonHead(buff,dragonCell[i].x,dragonCell[i].y-
miny,dragonCell[i].z);

 }

}

Different ways to draw the dragon

● Method 1: In the main loop draw the dragon to
a 512 byte buffer, and write it all to the VRAM

● Method 2: In the NMI draw the dragon in the
first NMI, write it to VRAM in the second NMI

● Method 3: draw the dragon in the main loop,
then flag the NMI that it is ready. The NMI
writes it in two 256 byte blocks over two NMIs
and signals when it is done

Draw it all in the main loop

● With a slow main loop (10 to 30 fps) the sprite
for the player moves at an uneven speed

● The ground display update also moves at an
uneven speed, and is too sluggish or too
jerky to look right

Break up drawing
over several NMIs

● Sprite position updated at 60 fps, and feels
very responsive

● The 96 bytes of ground movement update
every 3rd NMI and also feel neither too slow
nor too fast

● Sometimes the drawing of the dragon takes too
long, so an NMI is missed, causing
inconsistent response

Signaling architecture

● VDP Choice
– You can't send information to the VDP from both

the NMI function and the main line. It has to
be one or the other.

– The main line can do heavy calculations and will
be interrupted by the NMI to update the
display

● A variable will tell both who is updating the
render buffer.

What does the NMI do?

● The NMI routine keeps things moving
– Check the joystick and update the sprite

position table
– Update the music
– Send the new sprite position table to the VDP
– Every third NMI update the ground animation

table
● When signaled it will update the render buffer

NMI screen buffer updating

● With all of the other things being updated, the
full 768 byte name table can't be updated in
one NMI

● The solution is to use double buffering, so that
there are two name tables.

– draw the top half of the screen in one NMI and
the bottom half in the next one

– Clouds are still updated more often for a
parallax cue

Outline

● Graphics in Space Harrier arcade game
● Sprite conversion for hero of Space Harrier
● Adding perspective to the land
● Clouds and mountains add parallax
● Simulating 3D dragons with character based

graphics
● Adding Explosions

Fireballs are needed

● Visual Cue
– When the Space Harrier fires, the missile glows
– a fireball explodes when it hits the target
– The fireball gradually grows in size, and is

generally round in shape

Screenshot of char set

Drawing a circle with chars

odd=((size+1)&1)+1;

for(j=0;j<size;j++) {

 char jj=j-size/2;

 if(size==2) odd=2; else if(j>size/2) odd-=2; else if(j>0) odd+=2;

 if(odd==1) width=3; else if(odd==size-2) width=size; else width=odd;

 if(y+jj<4 || y+jj>19) continue;// clip above and below

 for(i=0;i<width;i++) {

 int pos=jj*32+i-width/2;

 if(i==0 && j==0) buff[pos]=0xe0;

And so on

Screenshot of explosion

Animating the explosion

● Without animating, the slow update rate (5 to
10 fps) of the explosion didn't seem right

– The pattern table for the explosion is 128 bytes
long.

– by repeating the first entries at the end, we can
choose from 4 different pattern sets

Explosion pattern table

const unsigned char explosionPattern[0x98]={

0x80, 0xC0, 0x8F, 0xE1, 0xD0, 0xB8, 0x3F, 0x1F, 0x38, 0x1C, 0xF3, 0xE6, 0x73, 0x29,

 0x40, 0x10, 0x10, 0xBD, 0xF6, 0x78, 0xD0, 0x68, 0xFE, 0x01, 0x01, 0x03, 0xF1, 0x87, 0x0B, 0x1D,

 0xFC, 0xF8, 0x01, 0x03, 0xF1, 0x87, 0x0B, 0x1D, 0xFC, 0xF8, 0x0F, 0x17, 0x0F, 0x03, 0x01, 0x03,

 0x0F, 0x5F, 0xF0, 0xA9, 0x7F, 0x3F, 0x1D, 0x0F, 0x16, 0x3F, 0x1F, 0x3F, 0xE8, 0x90, 0xED, 0x9B,

 0xC0, 0x80, 0x32, 0x4C, 0x8B, 0x53, 0xE6, 0xF3, 0x1C, 0x38, 0x21, 0xD6, 0x63, 0xC4, 0x7B, 0xF6,

 0xBD, 0x10, 0x7F, 0x16, 0x43, 0x9E, 0x6F, 0xBD, 0x08, 0x00, 0xF8, 0xFC, 0x97, 0x43, 0xB5, 0xD9,

 0x03, 0x01, 0xF0, 0xE8, 0xF0, 0xC0, 0x80, 0xC0, 0xF0, 0xFA, 0x0F, 0x95, 0xFE, 0xFC, 0xB8, 0xF0,

 0x68, 0xFC, 0x18, 0x84, 0xCB, 0x79, 0x38, 0x28, 0x60, 0x40, 0x42, 0xEE, 0x64, 0x7F, 0x9E, 0x1B,

 0x01, 0xE7, 0x99, 0x80, 0xC0, 0x8F, 0xE1, 0xD0, 0xB8, 0x3F, 0x1F, 0x38, 0x1C, 0xF3, 0xE6, 0x73, 0x29,

 0x40, 0x10,

};

Alternate explosion

● Runs every 3rd NMI
char explosionFrame;

void alternateExplosion()

{

 unsigned char *patt=explosionPattern;

 explosionFrame=(explosionFrame+1)&3;

 patt+=((explosionFrame&1)<<3)+((explosionFrame&2)<<1);

 put_vram(8*224,patt,128);

}

Outline

● Graphics in Space Harrier arcade game
● Sprite conversion for hero of Space Harrier
● Adding perspective to the land
● Clouds and mountains add parallax
● Simulating 3D dragons with character based

graphics
● Adding Explosions

Questions?

● Future directions
– Add in trees and bushes
– Add in flying tiki heads
– Add in different colour schemes for new levels
– Add in bonus level with the white dragon

● Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

